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Abstract. We examine a general technique for deriving the small time asymptotic expansion
of a correlation from the large frequency asymptotic form of the associated spectrum (conjugate
asymptotic properties). Our analysis explicitly takes into account the form of approach of
the spectrum to its asymptotic limit (i.e. asymptotic convergence), and the resulting impact
on the correlation asymptotic expansion. We fully evaluate the two lowest-order terms in
the small time asymptotic expansion of the correlation for the important special case of the
large frequency asymptotic behaviour of the spectrum being a negative power of frequency.
Included in our analysis is a determination of sufficient conditions on the rapidity of approach
of the spectrum towards its asymptotic form (i.e. convergence rate), for the derived correlation
asymptotic approximation to be accurate to second order. We comment on how small time
must be for our correlation asymptotic approximations to be valid. To motivate this analysis we
propose circumstances under which these results could be of utility in physics.

1. Introduction

The conjugate concepts ofspectrumS(ω) and correlation r(t) arise quite naturally and
commonly in many aspects of physics that have a probabilistic element in their specification
or description. Natural phenomena often are characterized by spectra or correlations that
asymptotically decay with a negative power law asω or t increases without bound.

A selection of such examples emanating from recent research is: temporal
autocorrelations of electrons in random potentials and random magnetic fields [1]; temporal
autocorrelations of electrons in random potentials with spin–orbit interactions [2]; vortex
orbit radius temporal autocorrelations for turbulent flow [3]; spatial autocorrelations of
airborne infrared imagery of natural terrain [4]; various spatial correlations and spectra
occurring in critical phenomena [5]; surface roughness spatial spectra [6]; atmospheric
airglow spatial spectra [7]; surface gravity wave height spatial spectra [8]; and fluorescence
temporal spectra [9]. In addition, power spectra that strictly obey a negative power law over
a very large domain of frequencies feature prominently in the theory of fractal self-similarity
[10], and such power spectra are the foundation of the theory of 1/f -noise [11], and its
generalization to coloured noise [12].

The research on theoretical and experimental investigations of surface roughness
reported by Yang and Lu [6] is especially conducive to application of the specific conjugate
asymptotic relations derived in section 5. Yang and Lu’s analysis features frequent
conversions between spectrum asymptotic behaviour towards infinity and correlation
asymptotic behaviour near zero, which is the problem that we shall address here.
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We shall introduce and define the mathematical meaning of correlations and spectra
in section 2. Our analysis will proceed from the basis thatS(ω) somehow approaches a
certain functional form asω→∞. Section 3 makes mathematically precise the meaning of
‘somehow approaches’ by invoking the concept of asymptotic convergence. The asymptotic
expansion ofr(t) as t → 0, given the conjugate asymptotic behaviour ofS(ω) asω→∞,
is derived to the extent possible while maintaining full generality in section 4. For the
important special case ofS(ω) approaching a power-law decay at largeω, the two lowest-
order terms of the smallt asymptotic expansion ofr(t) are explicitly derived in section 5,
for all possible powers ofS(ω) decay. The analysis of section 5 includes a derivation of
sufficient conditions on the rapidity with whichS(ω) approaches its asymptotic functional
form asω increases, for the derived smallt asymptotic approximations ofr(t) to be accurate
to second order. Section 6 explains and reinforces the fact that the derived asymptotic
convergence conditions onS(ω) are sufficient, but not necessary, conditions for assurance
of the precision of the derivedr(t) asymptotic approximation. As motivation for this work,
we conclude in section 7 with general examples of physics research for which our results
could be of considerable benefit.

The present analysis pertains to theω → ∞ spectrum behaviour implication for the
t → 0 correlation behaviour. Converse results, that is, thet → 0 correlation behaviour
implication for theω → ∞ spectrum behaviour are accessible from this analysis, but we
will not extend the analysis to their derivation, since these latter results are also accessible
from the generalized function analysis of Lighthill [13]. The present results are special
cases of particular interest to physics, within the general field of asymptotic approximation
[14], and their analysis and elucidation has attracted some recent attention [15–17].

2. Correlations and spectra

The autocorrelation of a real, stationary stochastic processx(t) (bold type indicates a
random variable) is defined as

r(t) ≡ 〈x(s)x(s + t)〉 (1)

where〈·〉 indicates the operation of mathematical expectation or ensemble averaging, ands

is an arbitrary time value. Thepower spectrumof x(t) is defined as the Fourier transform
of r(t), that is,

S(ω) ≡ 1

2π

∫ ∞
−∞

r(t) e−iωt dt (2)

from which it follows thatr(t) is regained fromS(ω) by the inverse Fourier transform

r(t) =
∫ ∞
−∞

S(ω) eiωt dω. (3)

r(t) is real and even, so it follows thatS(ω) is both real and even; accordingly (3)
simplifies to

r(t) = 2
∫ ∞

0
S(ω) cosωt dω. (4)

Likewise, (2) simplifies to

S(ω) = 1

2π
2
∫ ∞

0
r(t) cosωt dt. (5)

The identicality, to within a constant factor, of the reciprocal relations (4) and (5) implies that
conjugate pairs of asymptotic relations are necessarily symmetric in the following sense.
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If we swap t with ω, and rename the new function oft : r(t), and the new function of
ω: S(ω), then we always have the correct dual conjugate pair of asymptotic relations, to
within a constant multiplier. In essence, if we make the effort to discover that a particular
large frequency behaviour ofS(ω) implies a particular small time behaviour ofr(t), then
by symmetry we know also that the analogous large time behaviour ofr(t) implies the
analogous small frequency behaviour ofS(ω).

3. Asymptotic convergence

Let us define precisely what is meant by the intuitive notion thatS(ω) asymptotically
approaches the positive semidefinite functionSas(ω) as ω → ∞, which is symbolically
written asS(ω) ∼ Sas(ω) asω→∞.

S(ω) will be defined toasymptotically convergeuponSas(ω) asω→∞ with positive
definite convergence functionC(ω), if for every ε0 > 0 there exists anω0 > 0, such that
|S(ω) − Sas(ω)| < ε0C(ω) for all ω > ω0. This criterion may be succinctly expressed by
use of the Landauo(·) notation:

S(ω) ∼ Sas(ω) asω→∞ ≡ |S(ω)− Sas(ω)| = o(C(ω)) asω→∞. (6)

In words,S(ω) asymptotically converges uponSas(ω) asω → ∞, if the discrepancy
betweenS(ω) and Sas(ω) decays away faster than a certainC(ω) asω increases without
bound. Sensible choices ofC(ω) monotonically decay to zero asω increases.

Note that for givenS(ω) andSas(ω) there is an innumerable infinity of valid convergence
functions. For example, if one particularC(ω) is known to be valid, then so is any function
that is at least as large as the originalC(ω) everywhere beyond a certain value ofω.
However, not all possible convergence functions are equally useful, for the following reason.
The following analysis will impose sufficient conditions on the ‘smallness’ ofC(ω) for the
derived asymptotic approximations to be valid. Therefore, there is a benefit in identifying
a C(ω) that is as small as possible (to within a constant multiple); that benefit being that
there is then a maximal likelihood that the identifiedC(ω) is sufficiently small to guarantee
the validity of the asymptotic approximation to the implied precision. If our convergence
function is not sufficiently small, then we remain uncertain about whether our asymptotic
approximation is as accurate as we expect.

4. General asymptotic analysis

On choosing an arbitrarily small positiveε0, and a sufficiently largeω0 according to the
asymptotic convergence criterion of section 3, we expand (4) into

r(t) = 2
∫ ω0

0
S(ω) cosωt dω + 2

∫ ∞
ω0

S(ω) cosωt dω (7)

which may be expressed in terms ofSas(ω) as

r(t) = 2
∫ ω0

0
S(ω) cosωt dω + 2

∫ ∞
ω0

Sas(ω) cosωt dω + R(t) (8)

where theremainderR(t) is defined as

R(t) ≡ 2
∫ ∞
ω0

(S(ω)− Sas(ω)) cosωt dω. (9)
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Using the asymptotic convergence criterion of section 3, we obtain an upper bound on the
magnitude ofR(t):

|R(t)| < 2ε0

∫ ∞
ω0

C(ω) dω. (10)

We wish to determine the asymptotic form ofr(t) as t → 0. To this effect, introduce
an arbitrary constant phaseφ0, and interprett → 0+ as meaning values oft small enough
to satisfy

0< ω0t 6 φ0 (11)

in which case (8) expands into

r(t) = 2
∫ ω0

0
S(ω) cosωt dω + 2

∫ φ0/t

ω0

Sas(ω) cosωt dω

+2
∫ ∞
φ0/t

Sas(ω) cosωt dω + R(t) (0< t 6 φ0/ω0). (12)

Inserting the power series expansion of cosωt into the first two integrals of (12) results in

r(t) = 2
∫ ω0

0
S(ω) dω −

∫ ω0

0
S(ω)ω2 dω t2+ 1

12

∫ ω0

0
S(ω)ω4 dω t4+O(t6)

+2
∫ φ0/t

ω0

Sas(ω) dω −
∫ φ0/t

ω0

Sas(ω)ω
2 dω t2+ 1

12

∫ φ0/t

ω0

Sas(ω)ω
4 dω t4

− 2

6!

∫ φ0/t

ω0

Sas(ω)ω
6 dω t6+ · · · + 2

∫ ∞
φ0/t

Sas(ω) cosωt dω + R(t)
(0< t 6 φ0/ω0). (13)

Equation (13) allows us to derive the asymptotic expansion ofr(t) as t → 0 from the
arbitrary conjugate asymptotic formS(ω) asω→∞.

5. Conjugate asymptotic forms for decaying power laws

Let us introduce the particular family of decaying power-law asymptotic forms parametrized
by real, positivep:

S(ω) ∼ Sas(ω) = 1

ωp
(p > 0) asω→∞. (14)

Substituting (14) into (13), and using the identity∫ ∞
φ0/t

1

ωp
cosωt dω =

∫ ∞
φ0

1

φp
cosφ dφ t(p−1) (15)

we obtain the conjugate family of asymptotic expansions

r(t) = 2
∫ ω0

0
S(ω) dω −

∫ ω0

0
S(ω)ω2 dω t2+ 1

12

∫ ω0

0
S(ω)ω4 dω t4+O(t6)

+2
∫ φ0/t

ω0

ω−p dω −
∫ φ0/t

ω0

ω2−p dω t2+ 1

12

∫ φ0/t

ω0

ω4−p dω t4

− 2

6!

∫ φ0/t

ω0

ω6−p dω t6+ · · · + 2
∫ ∞
φ0

1

φp
cosφ dφ t(p−1) + R(t)

as t → 0. (16)
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In the following derivations of thet → 0 asymptotic approximations ofr(t), only the
two lowest-order terms in asymptotic expansion (16) will be retained, andC(ω) will be
chosen to decay to zero fast enough to ensure thatR(t), and any other similar remainder
terms, have no influence onr(t) as t → 0 to this order. We shall be quite liberal in our
choice ofC(ω), choosing algebraic decay in preference to the more conservative exponential
decay. The notion of algebraic convergence withconvergence rateq will be understood to
mean asymptotic convergence with the convergence function

C(ω) = 1/ωq. (17)

5.1. 0< p < 1

The two lowest-order terms when theS(ω) decay exponent is in the interval 0< p < 1 are
t (p−1) and constant, with thet2 and higher-order terms being neglected in (16), to yield

r(t) = c0
1

t (1−p)
+ c1+O(t2)+ R(t) as t → 0+ (18)

with

c0 = c0(φ0) ≡ 2

(1− p)φ
(1−p)
0 − 2

2!(3− p)φ
(3−p)
0 + 2

4!(5− p)φ
(5−p)
0

− 2

6!(7− p)φ
(7−p)
0 + · · · + 2

∫ ∞
φ0

1

φp
cosφ dφ (19)

and

c1 = c1(ω0) ≡ 2
∫ ω0

0
(S(ω)− Sas(ω)) dω. (20)

On differentiating (19) with respect toφ0, and taking into account all terms in the infinite
series, we find that the right-hand side is identically zero,

dc0/dφ0 = 0 ∀φ0 (21)

so thatc0 is in fact independent ofφ0, and therefore may be evaluated from (19) at any
convenient value ofφ0. In particular, chooseφ0 = 0, so that

c0 = lim
φ0→0+

c0(φ0). (22)

Applying (22) to (19) yields

c0 = 2
∫ ∞

0

1

φp
cosφ dφ

= 20(1− p) sin
(
p
π

2

)
(23)

where0(x) is the Euler gamma function [18].
Subject to the existence of the introduced improper integral, (20) may be expressed as

c1(ω0) = 2
∫ ∞

0
(S(ω)− Sas(ω)) dω − R(0) (24)

where an upper bound on the magnitude of the remainder term−R(0) is as in (10).
To progress further we have to choose a suitable convergence rateq, to completely

specify the convergence functionC(ω) according to (17). We soon realize that a suitable
convergence rate must be strictly greater than one, that is,

q = 1+ δ δ > 0. (25)
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Now we have all the information required to explicitly evaluate bound (10), yielding

|R(t)| < 2ε0

δ

1

ωδ0
. (26)

Substituting (23) and (24) into asymptotic expansion (18) gives

r(t) = 20(1− p) sin
(
p
π

2

) 1

t (1−p)
+ 2

∫ ∞
0
(S(ω)− Sas(ω)) dω

+O(t2)+ (R(t)− R(0)) as t → 0+ (27)

where a bound on the combined remainder term is computable from (26), being

|R(t)− R(0)| < 4ε0

δ

1

ωδ0
. (28)

From (11),ω0 6 φ0/t , so that ast → 0+, ω0 can be made arbitrarily large. This in
turn allows ε0 to become arbitrarily small as befits asymptotic convergence. From (28),
the combination of these two influences is that|R(t) − R(0)| becomes arbitrarily small.
ObviouslyO(t2) also becomes arbitrarily small in the same situation. At the same time, as
t → 0+ the first term on the right-hand side of (27) increases without bound, and the second
term remains a constant that is non-zero in general. Accordingly, for a convergence rate
q > 1, the influence of remainder terms on the two lowest-order terms of the asymptotic
expansion ofr(t) as t → 0+ does indeed vanish, leaving the desired result as

r(t) = 20(1− p) sin
(
p
π

2

) 1

|t |(1−p) + 2
∫ ∞

0
(S(ω)− Sas(ω)) dω as t → 0. (29)

Let us reflect upon the accessibility of asymptotic limit (29); that is, how closelyt

must approach zero beforer(t) is accurately described by (29). The only difficulty with the
preceding argument occurs ifδ is very small, that is,q is very close to one. In this case,
bound (28) requiresω0 to be extremely large andε0 to be extremely small, before it becomes
negligibly small. However, these constraints onω0 andε0 are achieved only at extremely
small t . Thus, remainder term(R(t) − R(0)) in (27) becomes negligible compared with
the two lowest-order terms only ast approaches extremely close to zero. We summarize
this argument by stating that asymptotic approximation (29) is easily accessible for the
parameter intervals 0< p < 1 andq > 1+, wherex+ (x−) is interpreted as meaningx
plus (minus) a small, but finite, number.

5.2. p = 1

The two lowest-order terms when theS(ω) decay exponent isp = 1 are lnt and constant,
with the t2 and higher-order terms being neglected in (16), which becomes

r(t) = −2 ln t + c2+O(t2)+ R(t) as t → 0+. (30)

Similarly to c0 in section 5.1,c2 is defined as a function of bothω0 andφ0, which turns out
to be constant with respect toφ0, so is calculable at anyφ0, in particularφ0→ 0+, giving

c2 = c2(ω0) = 2
∫ ω0

0
S(ω) dω − 2 lnω0+ lim

φ0→0+

(
2 lnφ0+ 2

∫ ∞
φ0

1

φ
cosφ dφ

)
= 2

∫ ω0

0
S(ω) dω − 2 lnω0− 2γ (31)

whereγ ≈ 0.577 216 is Euler’s constant [18].
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Subject to the existence of the introduced improper integral, (31) may be expressed as

c2(ω0) = 2
∫ 1

0
S(ω) dω + 2

∫ ∞
1
(S(ω)− Sas(ω)) dω − 2γ − R(0). (32)

We impose a convergence rateq > 1 as in section 5.1, and an identical analysis once
again demonstrates that the remainder terms become negligible in the smallt asymptotic
limit, in which case asymptotic expansion (30) is approximated to second order by

r(t) = −2 ln |t | + 2
∫ 1

0
S(ω) dω + 2

∫ ∞
1
(S(ω)− Sas(ω)) dω − 2γ as t → 0. (33)

For the same reason as enunciated in section 5.1, asymptotic approximation (33) is easily
accessible only ifq > 1+.

5.3. 1< p < 3

The two lowest-order terms of the asymptotic expansion when theS(ω) decay exponent is
in the interval 1< p < 3, are constant andt (p−1), with the t2 and higher-order terms being
neglected in (16), to yield

r(t) = c3+ c0t
(p−1) +O(t2)+ R(t) as t → 0+ (34)

with

c3 = c3(ω0) ≡ 2
∫ ω0

0
S(ω) dω + 2

∫ ∞
ω0

Sas(ω) dω (35)

andc0(φ0) being exactly as defined in (19).
For the same reason as cited in section 5.1,c0 is still given by (22), but now the result

of this limit is

c0 = lim
φ0→0+

2

(1− p)
1

φ
(p−1)
0

+ 2
∫ ∞
φ0

1

φp
cosφ dφ

= 20(1− p) sin
(
p
π

2

)
= −π for p = 2. (36)

Subject to the existence of the introduced improper integral, (35) may be expressed as

c3(ω0) = 2
∫ ∞

0
S(ω) dω − R(0). (37)

The convergence rateq will be chosen as in (25), whereupon the remainder terms bound in
(26) is regained.

Substituting (37) and (36) into (34) gives

r(t) = 2
∫ ∞

0
S(ω) dω + 20(1− p) sin

(
p
π

2

)
t (p−1)

+O(t2)+ (R(t)− R(0)) as t → 0+ (38)

subject to bound (28). We draw assurance from the fact that (38) implies

lim
t→0+

r(t) = r(0) = 2
∫ ∞

0
S(ω) dω (39)

as it should for possibly integrableS(ω) (i.e. finite power signals). Note that for the previous
cases of 0< p 6 1, limt→0+ r(t) does not exist, sincer(t)→∞ as t → 0+, reflecting the
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definite non-integrability ofS(ω) (i.e. infinite power signals). Substituting (39) into (38)
yields

r(t) = r(0)+ 20(1− p) sin
(
p
π

2

)
t (p−1) +O(t2)+ (R(t)− R(0)) as t → 0+. (40)

For the same reason as cited in section 5.1,ε0 can be made arbitrarily small ast
approaches arbitrarily close to zero. Furthermore, from (11),

ω0 6 φ0/t ⇒ 1

ωδ0
= B

φδ0
t δ whereB > 1. (41)

By choosingω0 sufficiently close toφ0/t , B can be made arbitrarily close to one—the
important property is thatB can be made a finite number. Substitution of (41) into (28)
yields

|R(t)− R(0)| < 4ε0(t)B

δφδ0
t δ = o(tδ) as t → 0+ (42)

where the property that the allowable smallness ofε0 depends on the chosen smallness of
t is indicated explicitly by writingε0(t); and where expressing the bound as ano(·) is
justified by the fact that the coefficient oft δ has only finite factors, apart fromε0(t), which
approaches zero ast → 0+.

It automatically holds that

O(t2) = o(t(p−1)) as t → 0+ (43)

and if we chooseδ > (p − 1), then

o(tδ) = o(t(p−1)) as t → 0+ for δ > (p − 1). (44)

Equivalently from (25), forq > p, (42) and (44) combine to give

|R(t)− R(0)| = o(t(p−1)) as t → 0+ for q > p. (45)

As t → 0+, the first two terms on the right-hand side of (40) areO(1) andO(t(p−1)),
respectively, so they comprehensively dominate the remainder terms in this limit. Therefore,
to the required accuracy the desired asymptotic approximation is

r(t) = r(0)+ 20(1− p) sin
(
p
π

2

)
|t |(p−1) as t → 0 (46)

this expansion being exact att = 0.
Turning our attention to the accessibility of asymptotic limit (46), we note that there are

two conditions under which (46) is achieved only at exceptionally smallt . One condition
is whenδ is extremely small, or equivalentlyq is extremely close to one. In this situation,
the middle expression in (42) becomes much smaller thant δ only when ε0(t) becomes
exceptionally small, which requiresω0 to be chosen exceptionally large, which in turn
requirest to be exceptionally small, sincet 6 φ0/ω0. The other condition is whenp
is extremely close to three. In this situation the difficulty is with (43), sincet2 becomes
much smaller thant (p−1) only whent is exceptionally small. In our notation this reasoning
implies that asymptotic approximation (46) is easily accessible for the parameter intervals
1< p < 3− andq > sup(p, 1+).
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5.4. p = 3

The two lowest-order terms of the asymptotic expansion when theS(ω) decay exponent is
p = 3, are constant andt2 ln t , with the t2 and higher-order terms being neglected in (16),
which becomes

r(t) = c3+ t2 ln t +O(t2)+ R(t) as t → 0+ (47)

with c3(ω0) defined as in (35), and simplifying to (37). Substituting (37) into (47) we obtain

r(t) = 2
∫ ∞

0
S(ω) dω + t2 ln t +O(t2)+ (R(t)− R(0)) as t → 0+ (48)

with a bound on(R(t) − R(0)) given by (42). Once again, (48) implies (39), consistent
with the possible integrability ofS(ω), which, when substituted into (48), gives

r(t) = r(0)+ t2 ln t +O(t2)+ (R(t)− R(0)) as t → 0+. (49)

It is true that

O(t2) = o(t2 ln t) as t → 0+ (50)

and if we chooseδ > 2 in (25), or equivalentlyq > 3, then it is also true that (42) becomes

|R(t)− R(0)| = o(tδ) = o(t2 ln t) as t → 0+ for q > 3. (51)

Recognizing that

t2 ln t = o(1) as t → 0+ (52)

we see that all of the remainder terms in asymptotic expansion (49) are negligible compared
with the two lowest-order terms, and that the desired asymptotic approximation to the
required accuracy is

r(t) = r(0)+ t2 ln |t | as t → 0 (53)

this expansion being exact att = 0.
Because lnt has a weak singularity att = 0, t must be exceptionally small before the

O(t2) remainder term becomes insignificant relative to thet2 ln t term. The same situation
arises with the(R(t) − R(0)) remainder term, forq too close to three. Accordingly,
asymptotic approximation (53) becomes accurate only at exceptionally smallt , or in our
introduced terminology, it has poor accessibility.

5.5. 3< p < 5

When theS(ω) decay exponent is in the interval 3< p < 5, the two lowest-order terms of
asymptotic expansion (16) are constant andt2, and neglecting thet (p−1) and higher-order
terms, we obtain

r(t) = c3+ c4t
2+O(t(p−1))+ R(t) as t → 0+ (54)

wherec3(ω0) is defined by (35), and

c4 = c4(ω0) ≡ −
∫ ω0

0
S(ω)ω2 dω −

∫ ∞
ω0

Sas(ω)ω
2 dω. (55)

c3(ω0) simplifies to (37), and subject to the existence of the introduced improper integral,
c4(ω0) simplifies to

c4(ω0) = −
∫ ∞

0
S(ω)ω2 dω − 1

2
R′′(0) (56)
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where primes indicate differentiation. The asymptotic convergence criterion of section 3
induces the remainder term upper bound∣∣∣∣12R′′(0)

∣∣∣∣ < ε0

∫ ∞
ω0

C(ω)ω2 dω. (57)

Substituting (37) and (56) into (54) derives

r(t) = 2
∫ ∞

0
S(ω) dω −

∫ ∞
0
S(ω)ω2 dω t2

+O(t(p−1))+ (R(t)− R(0))− 1

2
R′′(0)t2 as t → 0+. (58)

We see that (58) infers both (39) and

lim
t→0+

r ′′(t) = r ′′(0) = −2
∫ ∞

0
S(ω)ω2 dω (59)

as expected for possibly integrableS(ω) andS(ω)ω2. On substitution of (39) and (59), (58)
simplifies to

r(t) = r(0)+ 1
2r
′′(0)t2+O(t(p−1))+ (R(t)− R(0))− 1

2R
′′(0)t2 as t → 0+. (60)

We now choose a suitable convergence rateq. It transpires that the convergence rate
must be greater than three to provide assurance of the insignificance of all remainder terms
in (60). Consequently, we impose the conditionδ > 2 in (25) to ensure thatq > 3. A bound
on (R(t)−R(0)) is as specified in (42), and an analogous derivation to that in sections 5.1
and 5.3 proceeds from (57) to the following bound on the 1/2R′′(0)t2 remainder term∣∣∣∣12R′′(0)t2

∣∣∣∣ < ε0

(δ − 2)

1

ω
(δ−2)
0

t2 = ε0(t)D

(δ − 2)φ(δ−2)
0

t δ = o(tδ) as t → 0+ (61)

whereD > 1 can be made a finite number. Had we chosen a convergence rate less than or
equal to three, we would have obtained an infinite ‘bound’ onR′′(0), so thatR′′(0)t2 would
become strictly greater thanO(t2) as t → 0+—certainly not negligible compared with
the explicitly retainedt2 term in the asymptotic expansion. Comparing (42) and (61), we
notice that although the bounds that we have identified for(R(t)− R(0)) and 1/2R′′(0)t2,
respectively, are numerically different, the important feature is that they have the same
order, beingo(tδ) as t → 0+.

We note that

O(t(p−1)) = o(t2) as t → 0+ (62)

and that forδ > 2 (i.e. q > 3),

o(tδ) = o(t2) as t → 0+ for δ > 2. (63)

Substitutiing (63) into (42) and (61) yields

|R(t)− R(0)|, |R′′(0)t2| = o(t2) as t → 0+ for q > 3. (64)

The two lowest-order terms in asymptotic expansion (60) areO(1) andO(t2) as t → 0+,
so all of the remainder terms, beingo(t2) as t → 0+, are suitably negligible in the smallt
limit for the correct second-order asymptotic approximation to be

r(t) = r(0)+ 1
2r
′′(0) t2 as t → 0 (65)

this expansion being exact att = 0.
As in section 5.3, closer examination of the foregoing analysis reveals that in the two

circumstances ofq being extremely close to three (i.e.δ extremely close to 2), orp being
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very close to three, asymptotic limit (65) is achieved only ast becomes extremely small. In
our notation, asymptotic limit (65) is easily accessible for the parameter ranges 3+ < p < 5
andq > 3+.

5.6. p = 5

The S(ω) decay exponentp = 5 asymptotic approximation, and its derivation, is identical
to the 3< p < 5 case considered in section 5.5, except that theO(t(p−1)) remainder term
in (54) is replaced by anO(t4 ln t) remainder term. Since

O(t4 ln t) = o(t2) as t → 0+ (66)

asymptotic approximation (65) is still applicable, with the same condition on the convergence
rate as enunciated in section 5.5, and the same accessibility situation still prevailing.

5.7. p > 5

Likewise, thep > 5 case also is identical to the 3< p < 5 case considered in section 5.5,
except that theO(t(p−1)) remainder term is now replaced by anO(t4) remainder term.
Since

O(t4) = o(t2) as t → 0+ (67)

asymptotic approximation (65) is still applicable, and so are the corresponding condition on
convergence rate, and accessibility situation.

6. Conditions on convergence rates

Note that the upper bounds on remainder terms that we deduced in the derivation of
sections 4 and 5 are not supremums (i.e. least upper bounds). So, in general, the
actual remainders will be smaller than our bounds for them. However, the conditions
that we imposed on the convergence ratesq, to ensure validity of our derived smallt
asymptotic approximations, were dictated by our bounds for the remainder terms. If we
could have identified tighter bounds for the remainder terms, then there would have been
a commensurate relaxation in the conditions imposed onq. Therefore, we realize that the
conditions imposed onq throughout section 5 are sufficient, but not necessary, for the
derived asymptotic approximations to be valid.

7. Significance of conjugate asymptotic properties

Let us consider the utility of the conjugate asymptotic behaviours derived (partially, but
generally) in section 4 and (completely, but specifically) in section 5. In section 1 we
identified the specific research problem of Yang and Lu [6] as potentially being a particularly
appropriate beneficiary of our results. Now we shall explore more general prospective
applications.

A natural phenomenon that is associated with a stochastic process is partially
characterized by its correlation in time space, or its spectrum in frequency space. For
some phenomena, experiment indicates that either the correlation or the spectrum decays
with a certain functional dependence on its argument as the argument becomes large. This
behaviour would be observed up to a limiting value of the argument; for correlations the
time lag must be shorter than the time interval over which signals are measured, for spectra
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the frequency is limited by the spectral range of the spectrometer, and for both the respective
decays cannot be followed beneath the measuring instrument noise threshold. Although the
characteristic decay is observed only over a finite domain, often a mathematically appealing
and scientifically defensible assumption is that the noted characteristic decay continues
ad infinitum. For other phenomena, belief in the intrinsic simplicity and symmetry (e.g.
invariance with respect to scaling) of nature may dictate that the decay in the correlation
or spectrum at large argument values continues with its characteristic form all the way to
infinity in its domain.

In some circumstances it is imperative that the conjugate small argument behaviour
be determined, because that may be the very quantity that a proposed physical theory for
the phenomenon calculates most reliably and easily. For example, statistical mechanics
with reference to atomic and molecular theory would be used to directly calculate the pair
correlation function for non-ideal gases, liquids or solids, but x-ray or neutron diffraction
experiments would actually measure the associated spectrum over a finite wavenumber
domain. Numerically evaluating the Fourier transform of the measured spectrum, even
an extrapolated version thereof, will not necessarily yield an accurate approximation for
the pair correlation near the origin, because such a computation will effectively truncate
the large wavenumber decay at some finite value, due to time and precision constraints.
The definitive functional form being sought is only revealed by analysis, such as the one
presented here. Only then do we have an accurate experimental determination of the pair
correlation function very close to the origin, to compare with the theoretical determination
of such.

In summary, the conjugate asymptotic properties of correlations and spectra allow
extrapolations to infinity in one space to dictate the extrapolation to zero in the conjugate
space, without the need for possibly intractable numerical computations. This may enable
comparison between experiment and theory for the natural phenomenon under investigation.
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